Chapter 3

Consumer Behavior

Question:

- Mary goes to the movies eight times a month and seldom goes to a bar.
- Tom goes to the movies once a month and goes to a bar fifteen times a month.
- What determine consumers' choice?

Chapter 3

Consumer Behavior

- Three steps involved in the study of consumer behavior
- 1. ()
 - How and why people prefer one good to another
- 2. ()
 - People have limited incomes

Chapter 3

- 3. Given preferences and limited incomes, what amount and type of goods will be purchased?
 - What combination of goods will consumers buy to maximize their satisfaction?

Chapter 3

Consumer Preferences – Basic Assumptions

- 1. Preferences are (
 - O Consumers can rank market baskets.
- 2. Preferences are (
 - If one prefers A to B and B to C, then one must prefer A to C.
- 3. Consumers *always prefer more* of any good to less.

Chapter 3

- The more, the better.
- No satiation.

Consumer preferences can be

represented graphically using

)

 Indifference curves represent all combinations of market baskets that the person is *indifferent to*.

).

).

5

• (

3

Chapter 3

6

Indifference Curves: An Example

Market Basket	Units of Food	Units of Clothing
A	20	30
В	10	50
D	40	20
E	30	40
G	10	20
Н	10	40

Chapter 3

7

Indifference Curves: An Example

Indifference Curves

Indifference curves slope downward to the right.

Chapter 3

Olf it sloped upward it would violate the assumption that more is preferred to less.

Indifference Maps

 Indifference curves can not cross OWhy?

Chapter 3

Indifference Curves

- The shape of indifference curves describes how a consumer is willing to substitute one good for another
 A to B, give up 6 clothing to get 1 food
 D to E, give up 2 clothing to get 1 food
- The more clothing and less food a person has, the more clothing they will give up to get more food

Chapter 3

Marginal Rate of Substitution

- Indifference curves are convex (to the origin)
 - As more of one good is consumed, a consumer would prefer to give up fewer units of a second good to get additional units of the first one.

Chapter 3

Marginal Rate of Substitution

 The MRS decreases as we move down the indifference curve

Along an indifference curve there is a diminishing marginal rate of substitution.
The MRS went from 6 to 4 to 1

Chapter 3

19

Marginal Rate of Substitution

Perfect Substitutes

- Two goods are perfect substitutes when the marginal rate of substitution of one good for the other is constant.
- Example: a person might consider apple juice and orange juice perfect substitutes

Chapter 3

Consumer Preferences

Perfect Complements

- Two goods are perfect complements when the indifference curves for the goods are shaped as right angles.
- Example: An additional left shoe gives her no extra satisfaction unless she also obtains the matching right shoe.

Chapter 3

Consumer Preferences

Utility

• A numerical score representing the satisfaction.

Chapter 3

24

20

Utility

• (OFormula that assigns a level of utility to individual market baskets Olf the utility function is

Chapter 3

U(F,C) = F + 2C

Utility - Example

Market Basket	Food	Clothing	Utility
А	8	3	8 + 2(3) = 14
В	6	4	6 + 2(4) = 14
С	4	4	4 + 2(4) = 12

25

Chapter 3 26

Utility - Example

 Baskets for each level of utility can be plotted to get an indifference curve ○To find the indifference curve for a utility of

Chapter 3

14, we can change the combinations of food and clothing that give us a utility of 14

Utility - Example

- Draw the indifference curves of following utility functions.
- U (X, Y) = 5 XY • U(X, Y) = 10(X + Y)U (X, Y) = 5 min (X, Y)

Utility

- Although we numerically rank baskets and indifference curves, numbers are ONLY for ranking
- A utility of 4 is not necessarily twice as good as utility of 2
- There are two types of ranking Ordinal ranking OCardinal ranking

Chapter 3

Chapter 3

29

Utility

• Ordinal Utility Function

 Places market baskets in the order of most preferred to least preferred, but it does not indicate how much one basket is preferred to another.

Cardinal Utility Function

Outility function describing the extent to which one market basket is preferred to another.

Chapter 3		3

Chapter 3	32

The Budget Line

- Let F equal the amount of food purchased, and C is the amount of clothing.
- Price of food = P_F and price of clothing = P_C
- Then P_F F is the amount of money spent on food, and P_C C is the amount of money spent on clothing.

Chapter 3

The Budget Line

• The budget line then can be written:

$$P_F F + P_C C = I$$

34

Budget Constraints

Market	Food	Clothing	Income	
Basket	P _F = \$1	P _c = \$2	$I = P_FF + P_CC$	
А	0	40	\$80	
В	20	30	\$80	
D	40	20	\$80	
E	60	10	\$80	
G	80	0	\$80	

Chapter 3

35

33

The Budget Line

The Budget Line

- The slope indicates the rate at which the two goods can be substituted without changing the amount of money spent.
- We can rearrange the budget line equation to make this more clear

The Budget Line

$$I = P_X X + P_Y Y$$
$$I - P_X X = P_Y Y$$
$$\frac{I}{P_Y} - \frac{P_X}{P_Y} X = Y$$

Chapter 3

Chapter 3 37

Budget Constraints

The Budget Line

- The vertical intercept (I/P_C), illustrates the maximum amount of C that can be purchased with income I.
- The horizontal intercept (I/P_F), illustrates the maximum amount of F that can be purchased with income I.

30

Chapter 3

Consumer Choice

- Given preferences and budget constraints, how do consumers choose what to buy?
- Consumers choose a combination of goods that will maximize their satisfaction, given the limited budget available to them.

Chapter 3

42

Consumer Choice

- The maximizing market basket must satisfy two conditions:
- 1. It must be located on the budget line.
- 2. It must give the consumer the most preferred combination of goods and services.

Chapter 3

Consumer Choice

- Consumer wants to choose highest utility within their budget
- In previous graph, point C is where the indifference curve is just tangent to the budget line
- Slope of the budget line equals the slope of the indifference curve at this point

Chapter 3

Consumer Choice

 Recall, the slope of an indifference curve is:

MRS	= -	ΔC
		_

Further, the slope of the budget line is:

Chapter 3

46

Consumer Choice

$$MRS = \frac{P_F}{P_c}$$

Chapter 3

47

43

45

Consumer Choice

Marginal Utility and Consumer Choice

Formally: $0 = MU_F(\Delta F) + MU_C(\Delta C)$

No change in total utility along an indifference curve. Trade off of one good to the other leaves the consumer just as well off

Chapter 3 49

Marginal Utility and Consumer Choice

Rearranging:

 $-(\Delta C / \Delta F) = MU_F / MU_C$ Since $-(\Delta C / \Delta F) = MRS of F for C$ We can say MRS = MUF/MUC

Chapter 3

50

52

Marginal Utility and Consumer Choice

• When consumers maximize satisfaction:

 $MRS = P_F/P_C$

Since the MRS is also equal to the ratio of the marginal utility of consuming ${\rm F}$ and ${\rm C}$

 $MU_{F}/MU_{C} = P_{F}/P_{C}$

Chapter 3

51

Marginal Utility and Consumer Choice

 Rearranging, gives the equation for utility maximization:

$$MU_F / P_F = MU_C / P_C$$

Chapter 3