Chapter 5

Uncertainty and Consumer Behavior

Q: Value of Stock

Investment in offshore drilling exploration:

Two outcomes are possible

- () the stock price increases from \$30 to \$40/share. (Probability of success = 25 %)
- () the stock price falls from \$30 to \$20/share. (Probability of failure = 75 %)

2

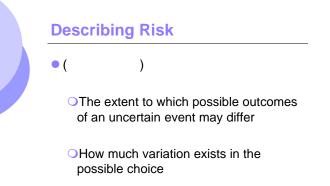
Chapter 5

Expected Value

EV = Pr(success)(value of success) + Pr(failure)(value of failure)

EV = 1/4 (\$40/share) + 3/4 (\$20/share)

Chapter 5


EV = \$25/share

Expected Value

- In general, for n possible outcomes:
 Possible outcomes having payoffs X₁, X₂, ... X_n
 - $\bigcirc Probabilities of each outcome is given by <math display="inline">Pr_{1}, \\ Pr_{2}, \ ... \ Pr_{n}$

$$E(X) = Pr_1X_1 + Pr_2X_2 + ... + Pr_nX_n$$

Chapter 5

Chapter 5

5

Q: Which Job?

 Suppose you are choosing between two part-time sales jobs that have the same expected income (\$1,500)

The first job is based entirely on commission.
The second is a (almost) salaried position.
The third is a salaried position.

```
Chapter 5
```


Variability

- There are two equally likely outcomes in the first job--\$2,000 for a good sales job and \$1,000 for a modestly successful one.
- The second pays \$1,510 most of the time (.99 probability), but you will earn \$510 if the company goes out of business (.01 probability).

Chapter 5

• The third pays \$1,500.

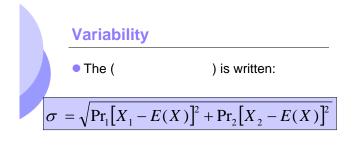
Variability

	Outcome 1		Outcome 2	
	Prob.	Income	Prob.	Income
Job 1: Commission	.5	2000	.5	1000
Job 2: Fixed Salary	.99	1510	.01	510

Chapter 5

Variability	Variability	
• ()	 Greater variability from expected value signals greater risk. 	es
• EV ₁ = ½ \$2,000 + ½ \$1,000 = \$1,500	 Variability comes from () in payoffs 	
• EV ₂ = (0.99)\$1,510+(0.01)\$510 = \$1,500	 Difference between expected payoff and actual payoff 	
• EV ₃ = \$1,500		
Chapter 5 9	Chapter 5	10

7


Variability – An Example

Deviations from Expected Income (\$)				
	Outcome 1	Deviation	Outcome 2	Deviation
Job 1	\$2000	\$500	\$1000	-\$500
Job 2	1510	10	510	-990

11

Variability

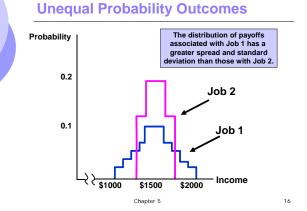
• We can measure variability with standard deviation

Chapter 5

Standard Deviation – Example

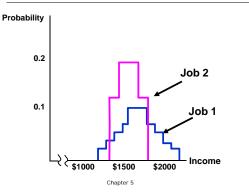
• Standard deviations of the two jobs are:
$\sigma = \sqrt{\Pr_{1}[X_{1} - E(X)]^{2} + \Pr_{2}[X_{2} - E(X)]^{2}}$
$\sigma_1 = \sqrt{0.5(\$250,000) + 0.5(\$250,000)}$
$\sigma_1 = \sqrt{250,000} = 500$
$\sigma_2 = \sqrt{0.99(\$100) + 0.01(\$980,100)}$
$\sigma_2 = \sqrt{9,900} = 99.50$
Chapter 5

14


18

Q: Revised

- What if the outcome probabilities of two jobs have unequal probability of outcomes
 - OJob 1: greater spread & standard deviation OYou will choose job 2 again


Chapter 5

Q: Re-Revised

- Suppose we add \$200 to each payoff in Job 1 which makes the expected payoff = \$1700.
 - Job 1: expected income of \$1,700 and a standard deviation of \$500.
 - Job 2: expected income of \$1,500 and a standard deviation of \$99.50

Unequal Probability Outcomes

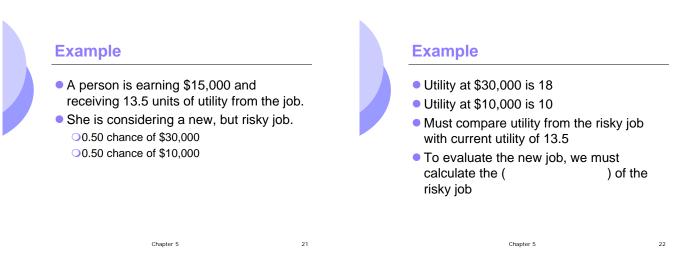
Chapter 5

17

13

St. Petersburg Paradox

- Game: Toss a coin
- Payoff:
 If H at the 1st toss: 2¹ = 2
 If H at the 2nd toss: 2² = 4
 ...
 - OIf H at the nth toss: 2ⁿ
- The fee for the game: 10
- What is the EV of the game?


Chapter 5

Preferences Toward Risk

 Can expand evaluation of risky alternative by considering utility that is obtained by risk

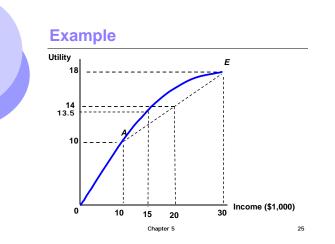
A consumer gets utility from incomePayoff measured in terms of utility

Chapter 5


19

Preferences Toward Risk

• The () of the risky option is the sum of the utilities associated with all her possible incomes weighted by the probability that each income will occur.


E(u) = (Prob. of Utility 1) *(Utility 1) + (Prob. of Utility 2)*(Utility 2)

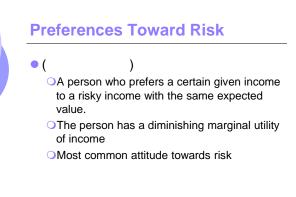
Example

Chapter 5

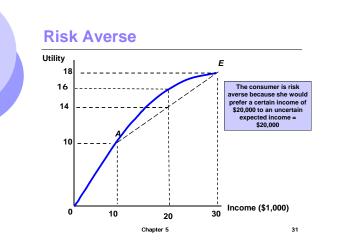
23

-	Example 2	
	 Game: Toss a 	a fair coin
	 Game 1 H: +\$100 Game 2 H: +\$200 	
	• Game 3 • H: +\$20,000	T: -\$10,000
		Chapter 5

Expected Values


- EV₁ = (1/2)\$100 + (1/2)(-\$0.5) = \$49.75
- EV₂ = (1/2)\$200 + (1/2)(-\$100) = \$50
- EV₃ = (1/2)\$20,000 + (1/2)(-\$10,000) = \$5,000

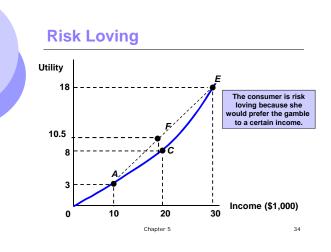
Chapter 5 Chapter 5 27 27


Expected Utility • Suppose U(M) = M^{1/2}, M = \$10,000 • U(M) = 10,000^{1/2} = 100 • EU₁ = (1/2) 10,100^{1/2} + (1/2) 9,999.5^{1/2} = 100.248 • EU₂ = (1/2) 10,200^{1/2} + (1/2) 9,900^{1/2} = 100.247 • EU₃ = (1/2) 30,000^{1/2} + (1/2) 0^{1/2} = 86.603 Chapter 5 Chapter 5

Example 3

• Q: Your utility function is $U(M) = M^{1/2}$ and your initial wealth is 36. Will you play a gamble in which you win 13 with probability of $\frac{1}{2}$ and lose 11 with probability of $\frac{1}{2}$? • $U(M) = 36^{0.5} = 6$ • $EV = \frac{1}{2}(36+13) + \frac{1}{2}(36-11) = 37$ • $EU = \frac{1}{2}(36+13)^{0.5} + \frac{1}{2}(36-11)^{0.5}$ $= \frac{1}{2}7 + \frac{1}{2}5 = 6$

Chapter 5



Preferences Toward Risk

- A person is said to be () if they show no preference between a certain income, and an uncertain income with the same expected value.
- Constant marginal utility of income

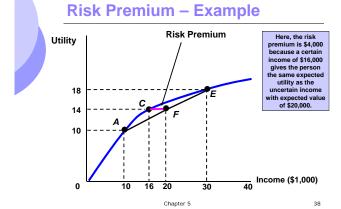
Chapter 5

Preferences Toward Risk

- The () is the maximum amount of money that a risk-averse person would pay to avoid taking a risk.
- The risk premium depends on the risky alternatives the person faces.

Risk Premium – Example

- From the previous example
 - A person has a .5 probability of earning \$30,000 and a .5 probability of earning \$10,000
 - The expected income is \$20,000 with expected utility of 14.


Risk Premium – Example

- Point F shows the risky scenario the utility of 14 can also be obtained with certain income of \$16,000
- This person would be willing to pay up to \$4000 (20 – 16) to avoid the risk of uncertain income.

Chapter 5

37

39

Reducing Risk

- Consumers are generally risk averse and therefore want to reduce risk
- Three ways consumers attempt to reduce risk are:

1.	()	
2.	()	
3.	()

Chapter 5