
1

Appendix 

Basic Math 
for 

Economics
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Functions of One Variable

 Variables: The basic elements of algebra, 
usually called X, Y, and so on, that may be 
given any numerical value in an equation

 Function:

)( XfY 
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Independent and Dependent 
Variables

 Independent Variable: a variable that is 
unaffected by the action of another variable 
and may be assigned any value

 Dependent Variable: a variable whose value 
is determined by another variable or set of 
variables
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Two Possible Forms of Functional 
Relationships

 Y is a linear function of X

– Table  A.1 shows some values of the linear 
function,   Y = 3 + 2X

 Y is a nonlinear function of X
– This includes X raised to the powers other than 1

– Table  A.1 shows some values of a quadratic 
function Y = - X2 + 15X

bXaY 
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Table A.1: Values of X and Y for Linear and 
Quadratic Functions

Linear Function Quadratic Function
Y = f(X) Y = f(X)

 x    = 3 + 2X  x    = -X2 + 15X
-3 -3 -3 -54
-2 -1 -2 -34
-1  1 -1 -16
 0  3  0    0
 1  5  1  14
 2  7  2  26
 3  9  3  36
 4 11  4  44
 5 13  5  50
 6 15  6  54
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Graphing Functions of One 
Variable

 Graphs are used to show the relationship 
between two variables

 Usually the dependent variable (Y) is shown on 
the vertical axis and the independent variable 
(X) is shown on the horizontal axis
– However, on supply and demand curves, this 

approach is reversed
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Figure A.1: Graph of the Linear 
Function Y = 3 + 2X
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Intercept

 The general form of a linear equation is           
Y = a + bX

 The Y-intercept is the value of Y when X 
equals 0
– Using the general form, when X = 0, Y = a, so this is 

the intercept of the equation
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Slopes

 The slope of any straight line is the ratio of the change 
in Y to the change in X. 

 The slope can be defined mathematically as

where ∆ means “change in”

X

Y




  
X in Change

 Yin Change
 Slope
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Slopes

 For the equation Y = 3 + 2X the slope equals 2 
as can be seen in Figure A.1 by the dashed 
lines representing the changes in X and Y

 As X increases from 0 to 1, Y increases from 3 
to 5
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Figure A.1: Graph of the Linear 
Function Y = 3 + 2X
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FIGURE A.2: Changes in the Slope of a 
Linear Function
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Nonlinear Functions

 Figure A.4 shows the graph of the nonlinear 
function Y = -X2 + 15X

 The slope of the line is not constant but, in this 
case, diminishes as X increases

 This results in a concave graph which could 
reflect the principle of diminishing returns
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FIGURE A.4: Graph of the Function 
Y = X2 + 15X
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The Slope of a Nonlinear Function

 The graph of a nonlinear function is not a 
straight line

 Therefore it does not have the same slope at 
every point

 The slope of a nonlinear function at a particular 
point is defined as the slope of the straight line 
that is tangent to the function at that point.
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What we have been doing so far is to measure 
the difference quotient along a chord between 
two points.
Notice: the change in y relative to the change in 
x is the slope of the chord (green) line
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As we reduce the values of x closer to that at point A (X 
gets closer to zero)  the chord becomes more like the 
tangent. Eventually it will be equal. 
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Functions of Two or More Variables

 The dependent variable can be a function of 
more than one independent variable

 The general equation for the case where the 
dependent variable Y is a function of two 
independent variables X and Z is

),( ZXfY 
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A Simple Example

 Suppose the relationship between the 
dependent variable (Y) and the two 
independent variables (X and Z) is given by

 Some values for this function are shown in 
Table A.2

ZXY 
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TABLE A.2: Values of X, Z, and Y that 
satisfy the Relationship Y = X·Z

X Z Y
1 1 1
1 2 2
1 3 3
1 4 4
2 1 2
2 2 4
2 3 6
2 4 8
3 1 3
3 2 6
3 3 9
3 4 12
4 1 4
4 2 8
4 3 12
4 4 16 26

Graphing Functions of Two 
Variables

 Contour lines are frequently used to graph 
functions with two independent variables

 Contour lines are lines in two dimensions that 
show the sets of values of the independent 
variables that yield the same value for the 
dependent variable

 Contour lines for the equation Y = X·Z are 
shown in Figure A.5
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Derivative of a Function
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   
0

lim
h

f a h f a

h

 
is called the derivative of     at     .f a

We write:      
0

lim
h

f a h f a
f x

h

 
 

“The derivative of f with respect to x is …”
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 f x “f prime of x”or “the derivative of f with 
respect to x”

y  “y prime”

d y

d x “dee why dee ecks” or “the derivative of y with 
respect to x”

d f

d x “dee eff dee ecks” or “the derivative of f with 
respect to x”

 d
f x

d x “dee dee ecks uv eff uv ecks”or “the derivative 
of f of x”(    o f   o f    )d d x f x

 30

dx does not mean d times x !

dy does not mean d times y !
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dy

dx does not mean !dy dx

(except when it is convenient to think of it as division.)

df

dx
does not mean !df dx

(except when it is convenient to think of it as division.)
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(except when it is convenient to treat it that way.)

 d
f x

dx
does not mean times           !

d

dx
 f x
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The derivative is 
the slope of the 
original function.
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A function is differentiable if it has a 
derivative everywhere in its domain.  It 
must be continuous and smooth.  
Functions on closed intervals must have 
one-sided derivatives defined at the end 
points.

Rules of Differentiation
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  0
d

c
dx


example: 3y 

0y 

The derivative of a constant is zero.
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  1n nd
x nx

dx


examples:

  4f x x

  34f x x 

8y x

78y x 

power rule
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 d du
cu c

dx dx


examples:

1n nd
cx cnx

dx


constant multiple rule:

5 4 47 7 5 35
d

x x x
dx

  
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(Each term is treated separately)

sum and difference rules:

 d du dv
u v

dx dx dx
    d du dv

u v
dx dx dx

  

4 12y x x 
34 12y x  

4 22 2y x x  

34 4
dy

x x
dx

 
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product rule:

 d dv du
uv u v

dx dx dx
 

  2 33 2 5
d

x x x
d x

     2 3x   26 5x   32 5x x   2 x
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quotient rule:

2

du dv
v ud u dx dx

dx v v

   
 
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d x x

dx x



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 

2 2 3
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