The Consumer Price Index (CPI)

- measures the typical consumer's cost of living
- the basis of cost of living adjustments (COLAs) in many contracts and in Social Security

Measuring the CHAPTER 24 Cost of Living

How the CPI Is Calculated

1. Fix the "basket."

The Bureau of Labor Statistics (BLS) surveys consumers to determine what's in the typical consumer's "shopping basket."

- 2. Find the prices. The BLS collects data on the prices of all the goods in the basket.
- Use the prices to compute the total cost of the basket.

How the CPI Is Calculated

4. Choose a base year and compute the index. The CPI in any year equals

100 x cost of basket in current year cost of basket in base year

1

3

5. Compute the inflation rate.

The percentage change in the CPI from the preceding period.

Inflation rate =	CPI this year - CPI last year	x 100%
	CPI last year	

EXAMPLE basket: {4 pizzas, 10 lattes}

year	price of pizza	price of latte	cost of basket
2010	\$10	\$2.00	$10 \times 4 + 2 \times 10 = 60$
2011	\$11	\$2.50	\$11 x 4 + \$2.5 x 10 = \$69
2012	\$12	\$3.00	$12 \times 4 + 3 \times 10 = 78$

Compute CPI in each year using 12 ationbase year:

2010: $100 \times (\$60/\$60) = 100$ $15\% = \frac{115 - 100}{100} \times 100\%$ 100 2011: 100 x (\$69/\$60) = 115 -2012: $100 \times (\$78/\$60) = 130$ $13\% = \frac{130 - 115}{115} \times 100\%$

What's in the CPI's Basket?

3. Compute the basket's cost.

2

Problems with the CPI:

- Over time, some prices rise faster than others.
- Consumers substitute toward goods that become relatively cheaper, mitigating the effects of price increases.
- The CPI misses this substitution because it uses a fixed basket of goods.
- Thus, the CPI overstates increases in the cost of living.

6

8

Problems with the CPI:

- The introduction of new goods increases variety, allows consumers to find products that more closely meet their needs.
- In effect, dollars become more valuable.

(

- The CPI misses this effect because it uses a fixed basket of goods.
- Thus, the CPI overstates increases in the cost of living.

Problems with the CPI:

)

• Improvements in the quality of goods in the basket increase the value of each dollar.

(

- The BLS tries to account for quality changes but probably misses some, as quality is hard to measure.
- Thus, the CPI overstates increases in the cost of living.

Problems with the CPI

- Each of these problems causes the CPI to overstate cost of living increases.
- The BLS has made technical adjustments, but the CPI probably still overstates inflation by about 0.5 percent per year.
- This is important because Social Security payments and many contracts have COLAs tied to the CPI.

Contrasting the CPI and GDP Deflator

Imported consumer goods included in CPI excluded from GDP de		
The basket:	Capital goods: excluded from CPI included in GDP deflator (if produced domestically)	
 GDP deflator uses basic currently produced goo This matters if different prich changing by different amo 	vices	

11

7

9

Correcting Variables for Inflation: Comparing Dollar Figures from Different Times

- Inflation makes it harder to compare dollar amounts from different times.
- Example: the minimum wage
 - \$1.25 in Dec 1963
 - \$7.25 in Dec 2013
- Did min wage have more purchasing power in Dec 1963 or Dec 2013?
- To compare, use CPI to convert 1963 figure into "2013 dollars"...

12

Correcting Variables for Inflation: Comparing Dollar Figures from Different Times

Amount	_	Amount	v	Price level today	
dollars	-	dollars	^	Price level in year T	

In our example,

\$12

\$10

\$8

\$6

\$4

\$2

\$0

Dollars per hour

- "year T" is 12/1963, "today" is 12/2013
- Min wage was \$1.25 in year T
- CPI = 30.9 in year *T*, CPI = 234.6 today

The minimum wage in 1963 was \$9.49 $\$9.49 = \$1.25 \times \frac{234.6}{30.9}$ in 2013 dollars.

The U.S. Minimum Wage in Current Dollars

and Today's Dollars, 1960-2013

2013 dollars

13

Correcting Variables for Inflation: Comparing Dollar Figures from Different Times

- Researchers, business analysts, and policymakers often use this technique to convert a time series of current-dollar (nominal) figures into constant-dollar (real) figures.
- They can then see how a variable has changed over time after correcting for inflation.
- Example: the minimum wage...

14

16

Correcting Variables for Inflation: Indexation

A dollar amount is **indexed** for inflation if it is automatically corrected for inflation by law or in a contract.

For example, the increase in the CPI automatically determines:

- the COLA in many multi-year labor contracts.
- adjustments in Social Security payments and federal income tax brackets.

Correcting Variables for Inflation: Real vs. Nominal Interest Rates

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

current dollars

The nominal interest rate:

- the interest rate not corrected for inflation
- the rate of growth in the dollar value of a deposit or debt

The real interest rate:

- corrected for inflation
- the rate of growth in the purchasing power of a deposit or debt

() = (nominal interest rate) – (inflation rate)

17

Correcting Variables for Inflation: Real vs. Nominal Interest Rates

Example:

- Deposit \$1,000 for one year.
- Nominal interest rate is 9%.
- During that year, inflation is 3.5%.
- Real interest rate
 - = Nominal interest rate Inflation
 - = 9.0% 3.5% = 5.5%
- The purchasing power of the \$1000 deposit has grown 5.5%.

Real and Nominal Interest Rates in the U.S., 1950–2013

